HETEROCYCLES FROM bis- \Beter KETOPHOSPHINE OXIDES I:

3,5-DISUBSTITUTED-1-PHENYLPHOSPHORYL-4-AZACYCLOHEXADI-2,5-ENES

J. C. Williams, Jr., J. A. Kuczkowski,¹ N. A. Portnoy,¹ K. S. Yong,¹

J. D. Wander² and A. M. Aguiar^{*}

Department of Chemistry, Tulane University

New Orleans, Louisiana 70118

(Received in USA 4 October 1971; received in UK for publication 8 November 1971)

Previous work on the 1,4-diphosphoniacyclohexadiene-2,5 ring system <u>1</u> has provided compounds of considerable theoretical interest.³ Specific biological activity has been observed for two cases of <u>1</u>.⁴ Elucidation of the physical nature of this ring system and synthesis of possibly bio-active new compounds is under way. We wish to report here synthesis of the novel⁵ heterocycles, <u>3</u>,5-disubstituted-1-phenylphosphoryl-4-azacyclohexadi-2,5-enes, <u>2</u>, (R₁ = H), the first in a series of preparations directed toward heterocycles structurally similar to <u>1</u> employing heretofore unknown <u>bis</u>- β -ketophosphine oxides as general precursors.

Synthesis of 2 is outlined in Scheme I.

^{*} Author to whom correspondence should be addressed.

SCHEME I

The convenient preparation of monoenamine phosphine oxides from 1-alkynylphosphine oxides and neat amine has been reported.^{6,7} Analogous treatment of the <u>bis</u>-alkynylphosphine oxides 3 with <u>n</u>-butyl amine at reflux temperature gave the <u>bis</u>-enamines in nearly quantitative yields. Prolonged reflux of 3 in neat amine gave no indication of cyclization to 2 ($R_1 = \underline{n}-C_4H_9$). The <u>bis</u>- β -ketophosphine oxides 5 were obtained from two-layer hydrolysis of a 10:1 etherchloroform solution of the <u>bis</u>-enamines⁸ 4 with 10% aqueous oxalic acid (Table I).

β -KETO PHOSPHINE OXIDES <u>5</u>										
R	Mp °C	Mp °C Yield ^a %		<u>J_{PH}(Hz)^b</u>						
<u>5</u> a C ₆ H ₅ 5b <u>t</u> -C₄H ₉ 5c <u>n</u> -C₃H ₇	134-6 150-1 87-8	67 78 85	4.08(d) 3.67(d) 3.42(d)	15.5 15.0 15.0						

TABLE I

a. Overall yield based on preparation from bis-alkynylphenylphosphine oxide 3.

b. nmr were obtained in deuteriochloroform on a Varian A-60 spectrometer and are reported in δ ppm downfield from the internal standard TMS.

Subsequent fusion of the <u>bis</u>- β -ketophosphine oxides <u>5</u> with solid ammonium carbonate afforded good yields of 2 ($R_1 = H$) as listed in Table II.

The cyclic structures assigned to 2a-c are clearly supported by their ir and nmr spectra. Characteristic absorptions are exhibited at 1640 cm⁻¹ (C=C) and 1480 cm⁻¹ (2° amine). The vinyl protons α to the phosphoryl molety show a distinct doublet of doublets (${}^{2}J_{PH} \sim 5$ Hz; ${}^{4}J_{NH-CH} \sim 2$ Hz) which collapses into a simple doublet upon double irradiation at the resonance frequency of the amine hydrogen. Exchange of the amine hydrogen with D₂O has the same effect upon the vinyl pattern of 2a and 2c. The failure of 2b to undergo deuterium-hydrogen exchange at nitrogen is attributed to steric interference by the two adjacent tertiary butyl groups.

Elemental analyses, molecular weights, and mass-spectral fragmentation patterns support the assigned structures.

	R	Mp °C	Yield ^a %	δP-CH=	(Hz) ² J_PH	(Hz) ⁴ J _{-NH-CH} b	зıрс	λ _{max}	€X10 ³
<u>2</u> a	CeHs	314-6	60	5.62	6	2	-8.7	240	3.01
<u>5</u> p	<u>t</u> -C ₄ H ₉	274-6	62	5.20	5	2	-8.5	220 270	1.94 0.24
<u>2</u> c	<u>n</u> -C ₃ H7	262-4	56	5.01	6	1.5	-10.9	221 270	4.15 0.57

TABLE II

3,5-DISUBSTITUTED-1-PHENYLPHOSPHORYL-4-AZACYCLOHEXADI-2,5-ENES 2

a. Based on diketone 5.

b. nmr spectra were obtained in deuteriochloroform on a Varian A-60 spec-trometer and are reported in δ ppm downfield from the internal standard TMS.

c. Chemical shifts obtained at 40 MHz on a Varian HR-100 spectrometer and are reported in δ ppm downfield from an external standard of 85% H₃PO₄.

X-ray analysis⁹ of <u>2b</u> has revealed a structure that exhibits all the classical features of a delocalized electronic ground state. The heterocyclic ring is planar and has a mirror plane bisecting the P,N axis with bond lengths: P-C = 1.74 Å; C=C = 1.41 Å; C-N = 1.43 Å; P=O = 1.47 Å. The implications of such a structure with respect to the high field 31 P shifts recorded for <u>2</u>a-c

The essential observation is that a delocalized ground state may be inferred for cyclic organophosphorus systems for which the ³¹P resonance occurs at significantly higher fields than are generally observed for ³¹P nuclei in a given oxidation state [e.g., for $\underline{1}$ (R₁ = R₂ = R₃ = C₆H₅) ³¹P δ = +3.5, and for 2b ³¹P δ = -8.5 while the usual range for P(IV) and P(V) species is -15 \rightarrow -45 and -25 \rightarrow -35, respectively].

<u>Acknowledgment</u>. We wish to acknowledge the National Institutes of Health for support of this work under Grant GM-16828 and the National Science Foundation under Grant GP-10739.

REFERENCES

- 1. NIH Postdoctoral Fellow, 1970-71.
- 2. NSF Postdoctoral Fellow, 1970-71.
- 3. a) A. M. Aguiar, K. C. Hansen, F. S. Reddy, <u>J. Amer. Chem. Soc.</u>, <u>89</u> 3067 (1967);
 - b) A. M. Aguiar, K. C. Hansen, ibid., 4235;

are to be fully discussed in a subsequent paper.

- c) R. Majeste, L. M. Trefonas, <u>J. Heterocycl. Chem.</u>, <u>3</u>(2), X-ray analysis, 269 (1969);
- R. D. Rieke, R. Copenhafer, A. M. Aguiar, M. S. Chattha, and J. C. Williams, Jr., "Electrochemical Studies on 1,4-Diphosphoniacyclohexa-diene-2,5 Salts Evidence for d-Orbital Participation," submitted to J. Amer. Chem. Soc.;
- a. Amer. Chem. Soc.;
 a. M. Agular, C. J. Morrow, R. M. Turkel, and N. S. Bhacca, <u>J. Org.</u> Chem., <u>35</u>, 2820 (1970).
- 4. Biological screening by Merck and Co., Rahway, N. J., U.S.A.
- 5. The phosphaphenathiazine system has been reported; E. R. H. Jones,
 F. G. Mann, J. Chem. Soc. (London), 1956, 786; F. G. Baum, H. A. Lloyd,
 C. Tamborski, J. Org. Chem., 29, 3410 (1964).
- W. Hagens, H. J. T. Bos, W. Voskuil and J. F. Arens, <u>Rec. Trav. Chem.</u> <u>Pays-Bas</u>, <u>88</u>, 71 (1969).
- 7. N. A. Portnoy, C. J. Morrow, M. S. Chattha, J. C. Williams, Jr. and A. M. Aguiar, <u>Tetrahedron Lett.</u>, <u>18</u>, 1397, 1401 (1971).
- 8. The bis enamines 4a and 4c ($R = C_{6H_5}$ and $R = n-C_{3H_7}$) were oils which failed to crystallize, however $\frac{4}{2}b$ ($R = t-C_{4H_9}$) was crystalline, mp 73-79° C.
- 9. Private communication from Dr. L. M. Trefonas, Department of Chemistry, Louisiana State University, New Orleans, Louisiana.